A. Definisi
: Logaritma adalah mencari pangkat.
52 = …. Operasi
Pemangkatan
2Log 25 = … Operasi
Logaritma
2Log 25 = 5
2 disebut basis
atau indek; dengan syarat basis> 0
dan basis #1
25
disebut numerus atau hasil; dengan syarat
numerus #1
2Log 25 = 5 artinya
sama dengan 25
= 25
Untuk menyelesaikan Logaritma
kita harus mengetahui sifat logaritma itu sendiri yang akan menjadi rumus.
Untuk memudahkan belajar Mas Admin membaginya menjadi 3 bagian, yakni : Rumus
Dasar, Rumus Operasi Perhitungan dan Rumus Umum/Lainnya.
B. Rumus
Dasar.
1. aLog b = c è ac = b
2. aLog a = 1
Bukti : a1 = a atau
dgn rumus lain a Log a
= Log a = 1
Log a
3. aLog an = n
Bukti : aLog an = n . aLog a
= n . 1
= n
4. aLog 1 = 0
Bukti : a Log 1 = x ax = 1 x = 0
Bilangan Berapapun jika dipangkatkan dgn 0 hasilnya 1.
5. a aLog b = b
C. Rumus
Operasi Perhitungan.
Digunakan
dalam operasi perhitungan (+, -, x, dan ^ )
1. aLog (b.c) = aLog b + aLog c
2. aLog (b/c) = aLog b - aLog c
3. aLog bn = n. aLog b
Dapat diteruskan menjadi Sbb :
5. aLog b bLog
c = aLog c
Bukti : aLog b bLog c = Log b . Log c
= Log c
Log a
Log b Log a
=
aLog c
D. Rumus
Umum / Lainnya.
. 1 . .
1. aLog b = bLog a
2. aLog b = . Log b . = . xLog
b .
Log a xLog a
x bisa diganti sembarang angka sesuai syarat
Catatan : 10Log b ---> 10Log b, karena basis 10
tidak usah ditulis
Latihan :
1. Ubahlah menjadi bentuk logaritma untuk soal
dibawah ini!
a. 23 = 8 è 2Log 8 = 3 pakai rumus dasar 1 (RD.1)
b. 45 = 1.024 è 4Log 1024 = 5
c. 73 = 343 è 7Log 343 = 3
2. Tentukan nilai dari 2Log 8 + 3Log 9 + 5Log
125 ?
Jawaban
:
Gunakan pohon faktor untuk menyederhanakan numerusnya. Gunakan juga basis sebagai acuan.
2Log 8 + 3Log 9 + 5Log 125 = 2Log 23 + 3Log 32 + 5Log 53 pakai RO.3
= 3 2Log 2 + 2 3Log 3 + 3 5Log 5 pakai RD.2
= ( 3 . 1 ) + ( 2 . 1 ) + ( 3 . 1 )
= 3 + 2 + 3
= 8
3. Carilah nilai dari 2Log
1/8 + 3Log1/9 + 5Log 1/125 ?
Jawaban
:
Ubahlah bentuk numerous yang semula berbentuk
pecahan.
2Log 1/8 + 3Log 1/9 + 5Log 1/125 = 2Log 1/23 + 3Log 1/32 + 5Log
1/53
= 2Log 2-3 + 3Log
3-2 + 5Log 5-3
=
(-3) 2Log 2 + (-2) 3Log 3 + (-3) 5Log 5
=
(-3 . 1 ) + (-2 . 1 ) + (-3 . 1)
=
-3 – 2 – 3
=
-8
4. Tentukanlah
nilai dari 4Log 8 + 27Log 9 ?
Jawaban :
= ( 3/2 . 1 )
+ (2/3 . 1)
=
13/6
5. Carilah nilai
dari 8Log 4 + 27Log 1/9 ?
Jawaban :
=
(2/3)
2Log
2 + (-2/3) 3Log 3
=
(2/3 . 1 ) + (-2/3 . 1)
=
2/3 - 2/3
= 0
=
(3 . 2/1) . 1
= 6
7. Diketahhui Log p
= A Carilah
nilai dari Log p3 q2 ?
Log q = B
Jawaban : Pakai RO.1 untuk menyelesaikan soal ini.
Jawaban : Pakai RO.1 untuk menyelesaikan soal ini.
Log p3 q2
= Log
p3 + Log q2
= 3 Log p
+ 2 Log q
= 3 A + 2B
8. Diketahui Log 40 = A Tentukanlah
nilai Log 20 ?
Log 2 = B
Jawaban :
Jawaban :
Log 20 = Log (40/2) Pakai RO.2
9. Diketahui nilai 2Log 7 = a
dan Tentukan nilai dari 6Log 14 ?
2Log
3 = b
Jawaban :
2Log 7 = a è Log 7 = a 2Log 3 = b è Log 3 = b
Jawaban :
2Log 7 = a è Log 7 = a 2Log 3 = b è Log 3 = b
Log
2 Log 2
Log 7 = a . Log 2 Log 3 =
b. Log 2
6Log
14 =
Log 14 = Log 7. 2 = Log
7 + Log 2
Log 6
Log 3. 2 Log 3 + Log 2
b Log 2 + Log 2 Log 2 (b + 1)
=
(a+1)
(b+1)
64 = 12X + 4
12X = 60
X = 15
12X = 60
X = 15
11. Berapa nilai dari
Log 75? Jika Log 3 = 0,4771 dan Log 2 = 0,3010.
Jawaban :
Log 75 = Log 25. 3
= Log 25 + Log 3
= Log 52 + 0,4771
= 2 Log 5 + 0,4771
= 2 (Log 5) + 0,4771
= 2 (Log 10/2) + 0,4771
= 2 (Log 10 – Log 2) + 0,4771
= 2 (10Log 10 – 0,3010) + 0,4771
= 2 (1 – 0,3010) + 0,4771
= 2 ( 0,699) + 0,4771
= 1,8751
12. Carilah Nilai dari 2Log
8 + ½Log 0,25 + 3Log
1/27 + 2Log 1 ?
Jawaban :
Gunakam ROp.4 untuk menyelesaikan soal ini.
13. Carilah nilai dari aLog
1/b bLog 1/c2 cLog 1/a3 !
Jawaban :
Gunakan ROp.5
aLog
1/b bLog 1/c2 cLog 1/a3
=
aLog b-1 bLog c-2 cLog
a-3 Gunakan RD.3
=
(-1) aLog b (-2) bLog
c (-3) cLog a
=
(-6) aLog b bLog
c cLog a Gunakan
RO.5
=
(-6) Log b Log c Log a
Log
a Log b Log c
=
-6 .
1
=
-6
14. Berapakah nilai 4Log
3, jika 9Log 8 = 3m ?
Jawaban :
9Log 8 =
3m
32 3` =
3m Gunakan RO.4
Log 2
3Log 2 3/2 = 3m
3Log 2 3/2 = 3m
3/2
3Log 2 = 3m
3Log
2 = 3m . 2/3
= 2m
Gunakan
RU1 untuk menyelesaikan soal.
4Log 3 = . 1 . = . 1 . = . 1 . = 1 .
3Log 4 3Log 22 2 3Log 2 2.
2m
= 1 .
4m
15. Berapa 12Log75? Jika 5Log 3 = a dan 3Log4
= b.
Jawaban :
12Log75
= Log
75 Gunakan
RU.2
Log
12
= 3Log 75 = 3Log 52 . 3 = 3Log 52 + 3Log
3
3Log
12 3Log 4 . 3 3Log
4 + 3Log 3
. 1 . .
1 .
= 2 3Log 5 + 1 = 2 5Log
3 + 1 = 2 a + 1
b + 1 b + 1 b +
1
=
2/a + 1 = 2/a
+ a . a = (2+a)/a
b +1 b +1 a a (b +1)
Demikian
penggunaan beberapa rumus logaritma. Semoga bermanfaat. Cobalah dengan soal lainnya,
karena semakin banyak berlatih akan semakin mengingatkan kita pada rumus rumusnya
yang merupakan sifat dari logaritma itu sendiri.
Salam,
Mas
Admin
No comments:
Post a Comment